基本数据结构 之 树

英语:tree)是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合。

它是由n(n>=1)个有限节点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

它具有以下的特点

  • 每个节点有零个或多个子节点;
  • 没有父节点的节点称为根节点;
  • 每一个非根节点有且只有一个父节点;
  • 除了根节点外,每个子节点可以分为多个不相交的子树;

 

术语

  1. 节点的度:一个节点含有的子树的个数称为该节点的度;
  2. 树的度:一棵树中,最大的节点的度称为树的度;
  3. 叶节点终端节点:度为零的节点;
  4. 非终端节点分支节点:度不为零的节点;
  5. 父亲节点父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点;
  6. 孩子节点子节点:一个节点含有的子树的根节点称为该节点的子节点;
  7. 兄弟节点:具有相同父节点的节点互称为兄弟节点;
  8. 节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推;
  9. 树的高度深度:树中节点的最大层次;
  10. 堂兄弟节点:父节点在同一层的节点互为堂兄弟;
  11. 节点的祖先:从根到该节点所经分支上的所有节点;
  12. 子孙:以某节点为根的子树中任一节点都称为该节点的子孙。
  13. 森林:由m(m>=0)棵互不相交的树的集合称为森林;

 

种类

  • 无序树:树中任意节点的子节点之间没有顺序关系,这种树称为无序树,也称为自由树;
  • 有序树:树中任意节点的子节点之间有顺序关系,这种树称为有序树;
    • 二叉树:每个节点最多含有两个子树的树称为二叉树;
      • 完全二叉树:对于一颗二叉树,假设其深度为d(d>1)。除了第d层外,其它各层的节点数目均已达最大值,且第d层所有节点从左向右连续地紧密排列,这样的二叉树被称为完全二叉树;
        • 满二叉树:所有叶节点都在最底层的完全二叉树;
      • 平衡二叉树(AVL树):当且仅当任何节点的两棵子树的高度差不大于1的二叉树;
      • 排序二叉树(二叉查找树(英语:Binary Search Tree),也称二叉搜索树、有序二叉树);
    • 霍夫曼树:带权路径最短的二叉树称为哈夫曼树或最优二叉树;
    • B树:一种对读写操作进行优化的自平衡的二叉查找树,能够保持数据有序,拥有多于两个子树。

binary-tree

 

排序二叉树(二叉查找树)

binary-search-tree-2 binary-search-tree-1

AVL树

tree_rebalancing

B树

B树英语:B-tree)是一种自平衡的树,能够保持数据有序。这种数据结构能够让查找数据、顺序访问、插入数据及删除的动作,都在对数时间内完成。B树,概括来说是一个一般化的二叉查找树(binary search tree),可以拥有多于2个子节点。与自平衡二叉查找树不同,B树为系统大块数据的读写操作做了优化。B树减少定位记录时所经历的中间过程,从而加快存取速度。B树这种数据结构可以用来描述外部存储。这种数据结构常被应用在数据库和文件系统的实作上。

http://www.cnblogs.com/yangecnu/p/Introduce-B-Tree-and-B-Plus-Tree.html

https://zh.wikipedia.org/wiki/B%E6%A0%91

 

红黑树

红黑树与AVL的比较:

AVL是严格平衡树,因此在增加或者删除节点的时候,根据不同情况,旋转的次数比红黑树要多;

红黑是用非严格的平衡来换取增删节点时候旋转次数的降低;

所以简单说,如果你的应用中,搜索的次数远远大于插入和删除,那么选择AVL,如果搜索,插入删除次数几乎差不多,应该选择RB。

https://zh.wikipedia.org/wiki/%E7%BA%A2%E9%BB%91%E6%A0%91

https://github.com/julycoding/The-Art-Of-Programming-By-July/blob/master/ebook/zh/03.01.md

 

References:

google图片

wikipedia

 

 

暂无评论

发表评论

电子邮件地址不会被公开。 必填项已用*标注